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ABSTRACT

Let {x (-)} be a sequence of solutions to an ordinary

differential equation with random right sides (due to input

noise f; (.)}) and which converges weakly to a diffusion x(.)

with unique invariant measure il(.). Let P(t,-) denote the

measure of x(t), and suppose that u(t,.)- i(-) weakly. The

paper shows, under reasonable conditions, that the measures of

x (t) are close to P(.) for large t and small £. In ap-

plications, such information is often more useful than the simple

fact of the weak convergence. The noise £(.) need not be

bounded, the pair (xE (.), F(.)) need not be Markovian (except

for the unbounded noise case), and the dynamical terms need not

be smooth. The discrete parameter case is treated, and several

examples arising in control and communication theory are given.

tThis research was supported in part by the Air Force Office of
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I. INTRODUCTION

Many results are available concerning the weak convergence

of a sequence of processes {x C.)} to a diffusion x(.) Cwith

values in Rr), where {xE (.)} are the solutions to ordinary

differential equations with random right hand sides [l]-[S];

e.g., where A FE(x , ) for some function F and a

"wide band" noise process -(.). For small e > 0, the weak

convergence basically gives us information on the approximation

of x (.) by x(.) on arbitrarily large but still finite time

intervals. In applications to control and communication theory,

information concerning the asymptotic behavior - for small e,

but for "large" t is often of much greater interest. For ex-

ample, we want to know how well the asymptotic distributions

(the distributions at arbitrarily large times) of the x C.)

are approximated by the (say) invariant measure of x(') for

small E.

This problem was discussed in [2, Section 6] and, roughly

speaking, a result of the following type was obtained. Let (.)

be a stationary finite state jump Markov process, define ;(t) =

;(t/- 
2 ) and for smooth functions F(.,.), G(,, (-), where

EF(x, (t)) R 0 E EG(x, (t)), define x -) by

C C r
-)/ -(t) xR

(1.1) x = F(x, )/ + G(x,) + G(x), x(t) ER

Then, if x (0) converges weakly to x(O), {x£(.)} converges

weakly to a diffusion x(.) whose generator.Y is defined by

(1.2) Yf(x) = f'(x)G(x) + E(f'(x)F(x, (t)))'F(x,;(0))dt

0
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Suppose that x(.) has a unique invariant measure (.),

and let there be a smooth Liapunov function 0 < V(x) - ® as

Ix I  , and a Y > 0 such that

(1.3) .YV(x) < - YV(x), for large IxI

Then, for small s, (x (.), (.)) has an invariant measure

v (-) whose x-marginals u (.) converge weakly to ii(.) as

-~0 [2, Section 6]. V

We are interested in results of the same type, but where

(.) might not be Markov - or even bounded (Gaussian, for

example), and where F(.,.) and G(-,.) might not be smooth.

Also, in many interesting applications (1.3) does not hold (e.g.,

in many cases where F(.,.), G(.,.) and G(-) are bounded).

Thus, for our problem {x,(.), (.)} might not have an invari-

ant measure, even for small e > 0. Furthermore, we are also

interested in the case where the evolution of () depends on

x (-). Also, [2] does not address the question of the distribu-

tions of x (t) being close to w(.) for large t and small

E and arbitrary initial condition, a problem which is important

in applications. The basic techniques used here are similar to

those in [2]; both heavily depending on the use of "averaged

Liapunov functions."

Section 2 contains the basic approximation theorem, but using

the condition (AS) which is not usually directly verifiable. A

verifiable condition for (AS) appea:s in Section 4.

Since our interest is only in the asymptotic properties of the
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measures of the {x C.)} for small E, we assume weak convergence

(A4) - preferring to keep close to the main purpose, In any case,

many known sets of conditions imply the weak convergence (see

[j]-[5] or the conditions in Section 4). Section 4 also discusses

the changes required when F(.,.) or G(.,.) are not smooth, a

case which is important in many applications. The "unbounded"

noise case is dealt with in Section 5, some examples are dis-

cussed in Section 6, and in Section 7 we treat the discrete param-

eter case, when the noise might be "state" dependent. Section 3

contains a result that is useful in the proof of Section 4.

For future reference, we note that if F(') is Markov, it

is sometimes convenient to write (1.2) in the form

(1.4) Yf(x) = f'(x)G(x) + E(f'(x)EFxF ,CO))ds

0

The advantage of (1.4) is that if F(.,.) is not differentiable,

then the derivative in (1.2) might not exist, but that in (1.4)

might exist for t > 0, and we can weaken the conditions required

on F(.,.), and even on G(.,.).

7,
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2. THE BASIC CONVERGENCE THEOREM

Assumptions

Al. x(.) is a Feller diffusion process with continuous coef-

ficients and a unique weak sense solution on [0,-) for

each intial condition.

A2. x(.) has a unique invariant measure C') and pCx,t,'),

the measure of x(t) when x(0) = x, converges weakly

to ij(') for each x, as t .

A3. The convergence in (A2) is uniform in compact x-sets; i.e.,

for each f(.) E 4, the space of continuous bounded
functions on Rr , Exf(x(t)) - E Pf(x(0)) uniformly in x

in compact sets, where E denotes expectation with respect

to the stationary measure of x(.). ((A3) need only hold for

the functions of interest in the Theorem.)

A4. x ") x(.) weakly (initial condition x(0)) -if x (0)

x(O) weakly in Dr [0,-).

AS. There is an e0 > 0 such that {x£ (t), 0 < e < 0' t > 01

is tight. (See Theorem 3 for a verifiable criterion for (AS).)

Remark On (A3). Condition (A3) is implied if i- is weakly

stable in the sense of Liapunov. More specifically, let {f n}

be a sequence of continuous and uniformly bounded functions, each

with compact support such that -. i 0 weakly (as a - 0) is



equivalent to f fn(Y) Ilady) f f fn(Y) 0 (dy) for each n. Let

u(t,.) denote the distribution of x(t). Suppose that for each

6 > 0 and f , . . m'there are £ > 0 and n < o such

that

iffi(y)P4Ody) - ffi(y). (dy)I< , i < n

implies

ffi(y),P(t,dy) - ffi(Y)U(dY) < 6, i < m, all t > 0

Then (A4) holds. In the completely degenerate case, where x(-)

satisfies an ordinary differential equation and P is concentrated

at a point x0 , then the above criterion is equivalent to the

usual Liapunov stability of xO .

Lemma 1. For any integer m, let f(")Ei mr+r" Assume (Al)-(A3)

and let 0 = A < AI'" < A Let S denote a tight set of Rr

valued random variables. Then

Ex(0)f(x(t + Ai), i < m) E f(x(Ai), i <_ m)

uniformly for x(0)E S, as t .

The result is a consequence of (AI)-(A3), and the proof is

omitted. The uniformity, in particular, requires (A3). The A.

in Theorem 1 are the same as those in Lemma 1.

Theorem 1. Assume (AI)-(AS). Then for each f(')E -rm r and
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> , there are t0(f,6) < and e0(f,6) > 0 such that for

all t > t0 (f,6) and < E0 (f,6), and any sequence jx (.)}

which converges weakly to x(.),

(2.1) jEf(x×(t + Ai), i < m) - E f(x(Ai), i < m)1<

Let ,(-) be Markov and (xE(.), (.)) Markov and have an invari-

ant measure v (*). Replace (AS) by: There is a sequence T-

(T can depend on the initial condition) such that (AS) holds

for t > T . Then {v (.), small F} is tight and its x-marginals

converge weakly to P(.).

Remark. The theorem implies that the convergence as t + in

(2.1) is uniform in e for small e, a fact which is important

in applications. In applications, it is often possible to prove

results such as lim E Jx Ct) l< K, where K does not depend on
t -. 0

e or x. Then if { (.} is bounded, the replacement for (AS)

in the last paragraph holds.

Proof. Suppose that (2.1) is false. Then there is a subsequence

+ 0 and a sequence {t such that

(2.2) fEf(x (t C+ Ai), i <i M) - E f(x(.i),i <m)! > 6 > 0
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We will find a further subsequence, also indexed by e, which vio-

lates (2.2). Fix T > 0. By (AS), we can choose a further sub-

sequence such that {x (t.- T)} converges weakly to a random

variable x(O). By (A4), fx (t C- T + )} converges weakly to

x(.) with initial condition x(O) and

(2.3) Ef(x (t T + T + Ai), i < m) - E ~x(0)f(x(T + Ai), i < m).

By (AS), the set S of all possible x(O) (over all T > 0 and

weakly convergent subsequences) is tight. By Lemma 1, we can take

T large enough such that

(2.4) JEEx(O)f(x(T + Ai), i < m) - El f(x(Ai), i < m)I < 6/2.

Equations (2.3) and (2.4) contradict (2.2).

The proof of the last assertion is similar to the last part of

the proof of Theorem 4 and is omitted.
Q.E.D.



-8-

3. A LIAPUNOV FUNCTION CRITERION FOR (3.1)

(3.1) U {x(t), t > 0 , x(0) = x} is tight for each compact B.

xEB

To prove (3.1), we will require condition (A6).

A6. There is a continuous Liapunov function 0 < VCx) as

1x1 - - and a X0 and a0 > 0 such that VCx) < a 0

for xf Q0 = {x:V(x) < X0}. The partial derivatives of V(.)

up to order 2 are continuous.

Theorem 2 is proved partially because the proof is a prototype

of the technique used later to verify (AS).

Theorem 2. Under (Al) and (A6), condition (3.1) holds.

Proof. (A6) implies that Q0 is a recurrence set for x(-) [6].

We suppose w.l.o.g. that min V(x) = 0.
x

Let X 2 > X1 > X0 and define Qi = {x:V(x) < Xi}. Let TO

denote a Markov time such that x(T 0) Q0, and define 11

min{t:t > Top x(t) E Q0 }. Then ([6]) an application of Ito's for-

mula yields that for any Markov time t > 1O  for which

Ex (T)(t - ) < 0 :

(3.2) Ex( 0 )V(x(t fl l)) V(x(T 0 )) Ex ) VV(x(s))ds

0

< V a 0)Ex)c 0 ) (tnit I - TO
)

(3.3) Ex (, 0) (-11 - TO0) < V(x(,0))/ca0 , Px (.0) {,r1 < 0} 0 1



(3.4) Px() sup V(x(s)) > X} < V(X(To))/

1- 0

Define T0 = X1/a0 •

To get (3.1), define a sequence of Markov times {a } as

follows. For n = 1,

a1 = min{t:x(t) E QO}

For n > ,

on  i - + TO  if x(t) E QI QI- 3Q, frt[an-l' an-l T'1

aOn = infft:t > an I , x (t)E DQI } if X(n )E Q, but

x(t)E aQI for some tE[Il, an-l+ T0] •

an= inf{t:t > an-i' x(t)C QO} if X(ani) Q0

For n > 1, EX(a n)(n+l- an ) < T and px{cl < O} =.I. In fact

if the set B in (3.1) is contained in Q2' then Bsup E < X2/0
xE B

by (3.3). Fix 6 > 0. For each k and t define j(t,k) by

a = min{ai :P {t > a I < 6/4}j (t,k) 1 (oi) - °k+i

Define the intervals Ai = [aj(t,k)+(i-l), oj(t,k) i], i = 1, ...,k.

Then for >X_ 1'

k

(35) P x {V(x(t)) > X1 < Px{aj(t,k) > t} + X Px {sup V(x(s)) > Xl}
3)- - -jtksEA)

+ 6/4.



We can choose k such that the first term on the right hand side

is < 6/4 for all xEB. Then, by (3.4), we can choose \ such

that the sum is < 6/4 for all x. Since Vrx) as Ix!

(3.1) holds. Q.E.D.



4. An Averaged Liapunov Function Criterion for (AS).

In this section, we use the model (1.1) and a strong mixing

condition on (.). The development should be viewed as an il-

lustration of a general technique. The mixing condition is too

strong for many applications, and other conditions are consid-

ered in Section 5. The mixing condition is used simply to assure

certain bounds. In specific cases, a very similar development
can be carried through under other conditions on the noise, and

the same bounds shown. Also, (see, e.g., Example 2 in Section 6),

a very similar development can often be carried through for equa-

tions of forms other than (1.1). The smoothness requirement in

Condition (B2) is weakened in the remarks after the proof. In

order to get the necessary inequalities for any Liapunov function

based approach, an assumption such as (B4) seems to be required.

The conditions hold in numerous cases of interest.

We will use

Bl. ;(.) is a bounded, right continuous, stationary 0-mixing

process [7] with j 1/2 (t)dt <

0

B2. F(.,.), G(-,.) and G(.) are continuous, Rr valued

functions whose growth (as jxl - -) is O(jxl). The

partial derivatives of F(.,) up to order 2 (and of G(-,)

up to order 1) are bounded uniformly in x, , and EF(x,;)

0 EG(x,&).
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B3. There is a diffusion process x(-) with differential genera-

$ tor Y/ defined by (1.2), and which satisfies (Al)-(A3).

Also, (A6) holds, .but the partial derivatives of V(-) Li

to order 3 are continuous.

B4. There are constants K such that, uniformly in x, ,

(4.1a) !VkI(x)G(x, )1 + IV'(x)F(x,;)f < (1 + V(x))

(4.1b) I(Vjlx)F(x,4))' F(x,;)! <S K(l + V(x))

(4.2) I(VI (x)G(x,Q))I U(x,;)! I< K(l + I.VV(x)l)

for U = F,G,G

(4.3) I(VI x)F(x,EQ)x U(x, )j < K(l + J.YV(x)l), U =G,G

(4.4) (Of'(x)F(x,)x' F(x, )) I U(x,Q) I< K(l + !.VV(x)l)x x x_

U = F,G,G

Note that here and in the sequel the value of K might change

from usage to usage.

Define the differential operator A and its domain :?(A )

as in [41,[S], [8]. The method of use of A is similar to that in

[4] and the averaging method is similar to that in [2], [4], [5].

Theorem 3. Under (B1)-(B4) and the tightness of {x C(0)1, condi-

(AS) holds.
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Proof. For each integer N, define SN = {x: Ix! < N}. Let

bN(.) denote a function with values in 10,1] and satisfying

bN(x) = 1 in SN and equals 0 in Rr - SN , and the partial

derivatives up to order 3 are bounded uniformly in N,x. Define

VN() = V(.)bN(.). The V(') is "truncated" because we cannot

apply A to unbounded functions without additional conditions.

V(.) is the Liapunov function which is to be "averaged," and A^

plays the role of a "differential" generator for x C'). Let
S Sg

ES denote expectation conditioned on C (s), s < t, x (0). We
t

have (writing x = x (.))

(4.5) AVN (x) = V1 (x) EF(x '
, (t)) + G(x, e(t)) + G(xj]

To average out V, (x) G(x,; e(t)), define V e,0 (t) = VN, 0(xC(t)'t)'

where

V (x,t) = E G(x, 5 (t + s))ds

0

By changing variables s/S2 -s and using (Bi) and (4.1), we get

(the K do not depend on N)

(4.6) IVE, 0 (x,t)i < K(l + V(x)), xESN

We have V N,0(A) and (write x = x (t))

A V O(xt) = V Nx) G(x,$ t)

+ fds <EWV' (x) G(x,;F(t + s))+ Gx,,(t) + F(xtj
tN,x Gx) x J

0
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By changing variables S/C2  s and using (Bi) and (4.2), we get

that the integral is bounded by

(4.8) E K(l + IYV(x)l), xESN

We now proceed to average out the V' (x) F(x,4 (t))/ corm-
N,x

ponent of (4.5). Define V (t) = Ve 1 (xS (t),t) where

V (x,t) (x) Et F(x, 6(t + s))ds/EVN ,1 =,~ VN'x~ t

0

By (B1) and (4.1), and the change of variables s/e2  s, VN,

Ae

satisfies the bound in (4.6). Also, VN,1(.) E (A ) and (write

x = xE (t))

(4.9) AEVNI(X,t) = Vx(x) F(x, (t))/c +

ds Vf () E C (X' t s))k'(F(X' '(t)) + G(x, E (t))

0

+G (x)}.

By (Bl), (4.3) and the change of variables s/e2 - s, the terms

in (4.9) involving G + G are bounded by (4.8).

The remaining term in (4.9) must now be averaged out. Define

VE C (x(t),t) byVN,2(t ) = VN, 2 (



(4.10) VN ,t) d x ES F(x,; (t+S+T))) F(X,;(t+))

(V ', (x) F(x,;F(t+s+ 'C))x (x, (t+ )) /

By (B1), (4.3) and the change of variables s/e 2  S, T/C 2  t T,

V ,(x,t) is bounded by (4.6). Also, V( E ?(A6) and (writingVN,.. N,2 ' )  (A ) adwrtn

x = x5 (t))

(4.11) AEV ,2 (xt) = - (.inner integral of (4.10) evaluated at

t 0) + (V , 2  ) x

By (B1), (4.4), and the usual change of variables, the last term on

the right side of (4.11) is bounded by (4.8).

Define V C(X,t) =VNV x)
Define = X VN i(xt) and V N (t) = V'(x (t),t).

E N C N i=0
Define V (x,t) = Vc(x,t). For xESN,

(4.12a) IVN(X,t) - VN(X) < s K(l + V(x))

(4.12b) A V (t) = _YVN(x (t)) + O(E)(l + IYVV(x (t)))

Also, VE (x,t) > - Ke, and the expression in (4.12b) is < - 0/2 in

SN- QO for small S > 0.

Let T 0 denote a stopping time such that xC (' 0) Q0  and de-

fine

1  inf{t: t > To, xe (tEQ0 }

TN " infft: x (t) ES N
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Then, for small enough E > 0, and T any stopping time satisfying

T> t 0  and E(T - TO ) <

(4.13) EON V (xC(T1NfNlT), 'rnTNfT) - VN(X,(ToTN), To nT)

- E, C A' V(xe(s),s)ds

ET - -ON -TlfNnT)-(fON)]

The N subscript on VN can be dropped, since the x- argument is

always in SN. Now, let N (hence TN s , since by (B2), there

is no finite escape time for any e > 0). Then let T - -. Then

(4.13) and the fact that V (x,t) > - yield (for small E)

(4.14) E " ( T O) < 2[VC(xE(T 0 ),TO) + Ke]/J 0
0

< 3[V(x (T0 )) + Ke]/a o

and

- Ke + AP o sup V (x (s),s) > X} < (x (T0) ,0 l>s>To0

from which we get

2V(xC(O) ] + K£

(4.5) PT { sup V(x£Cs)) > X < 2 -I PT >s>To0

Inequality (4.14) implies that the mean travel time from aQ1 to

aQO for x(.) is bounded by 3(\ 1 + KC)/a O. The proof is
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completed as in Theorem 2 with (.4.14) and (4.15) replacing (3.3)

and (3.4), respectively.
Q.E.D.

Remark on Theorem 3 for non-smooth F and G. Let ,(.) be

Markov with transition function P(;,t,r) and invariant measure

P(r). Then even when F(.,;) and G(.,;) are not suitably dif-

ferentiable, the constructed VN(.) might still be in O(A )

and the bounds (4.6) and (4.8) might hold. For this non-smooth

case, we write the derivative which appears on the right side of

(4.7) as

(.16) '1 (x) G(x,;I P(;,(,t) s  d; 1]
(4U6 VN' x  CT, I)

This gradient might exist for s > 0, even though GC',;) is not

smooth. Similarly for the other terms. In particular write the

integrand in (4.10) in the form

V1l s ] (,l (
1 M[V' (x) F(x,; 2 ) P(l 6- , ' d; 2)] F(x,) P(d,1)

fIVxU)F . s , ]' F(X, l) p(d l)VN~X F(x, 2 P(Cl ---'d2)]x

In any case, if with these representatives, the constructed V

is in 9(A ) and (4.6) and (4.8) hold, then Theorem 3 continues to

hold, if F(.,.) and G(.,.) are measurable but do not satisfy the

continuity and differentiability assumptions in (B2).
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S. Unbounded Noise

Suppose that (1.1) is used and that the (-) there is Markov,

but unbounded. Then Theorem 3 is not directly valid. But, fre-

quently in applications cases arise which can be treated by essen-

tially the same proof, due to the special way in which the noise

enters, and the properties of the dynamical terms. We now describe

one such case - which was abstracted from the situation arising in

several examples when one tries to apply the method of Theorem 3.

Many important examples fit the situation to be described. See, for

example, Example 2 of Section 6, which is typical of a large class

of such cases.

We suppose that the VN(-) constructed in Theorem 3 are in

-(A ) for E < E., where e0 > 0, and that (1.3) holds and that

there are random variables £(t), (t), integers p,q and func-

tions V(.) and V(-) satisfying (5.1). For the first two lines

of (5.1) , let xESN. Let v (t,.) denote the measure of (x£ (t),C (t))

and let E0 denote expectation conditioned on (e (0),X (0)).

A VN(xt) + .- V(x) + o(c)(1 + V(x)) + o(c) E(t) V(xt)

vN(x,t) * VN(x) o(E)(1 + V(x)) + 0(c) + (t) V(xt)

sup EIV(t) P < , sup EI&(t) jq < -

IV(xt)lP/P'l= O(V(x)) = IVCx,t))q/q'l for large x I •
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Example 2 in Section 6 describes an important class where

these conditions hold. For another example, consider the case

where (-) is Gauss-Markov and F(x,;) = Fo(x) , G(x,;) = Go(x);

and F0 (x), G0 (x) as bounded and smooth and V'j(x) G(x) < YV(x)

+ K, Y > 0.

We shall need

Cl. G(.), F(.,.), G(.,.) are measurable and are O(Ixl) for

large Jxl, uniformly bounded ;-sets.

C2. For the given sequence {xg (0)}, sup EV(x (0)) < .

C3. sup El(t)l < . For small E, {x (.), (.)} and (.) are
t

Markov-Feller processes with right continuous paths and homo-

geneous transition functions.

C4. There are Y > 0 and K 1 < such that Y V(x) < - YV(x) + K

Remark. Condition (C2) facilitates the proof but is not necessary

for the result.

Theorem 4. Assume (Cl)-(C4), (A4), CB3), (5.1) and the conditions

above (5.1). There is an C1 > 0 such that for C < CI 1 (x (')p
;C )) has an invariant measure v (.). The x-marginals {UIc.£ }

of any such sequence of invariant measure converge weakly to ii(.)

as c -. 0. Also (AS) and the conclusions of Theorem 1 hold.
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Remark. If F(-,-) or G(-,-) are not smooth, see the remark for

Theorem 3. The theorem is an extension of the result in 12, Sec-

tion 6] in that both use (C4).

Proof. Define T and TN as in Theorem 3. By the hypotheses,

for any positive T,

(5.2) EV E (x C(Tfl N), TflT[N) - EV (C (0(),0)

=E A AV Cx (s),s)ds

< E J IVx())+ O(E) + 0(E)V(X (s))

+ 0(0)14 (s)V(x (s),s)l]ds

By (Cl), as N+ we have TN~ w.p.l. The limit as N

of the right side of (5.2) is bounded above by

(5.3) - YJ T EV(xc(s)) (1 + O(E))ds

+ 0(E) j T EP~"/ jV(xFE(s),s)IP/PlEl/P1 e (s)1P ds K 2 T

Y y(1 - 0 (E))j EV(x (s))ds + 2K T

for some real K2.
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Similarly the limit as N of the right side of (5.2) is

bounded below by

(5.4) EV(x (T))(1 - 0(:)) - K3

for some real K3 . Thus for some Y1 > 0,

FT

(5.5) EV(xE(T)) < K3 - Y1  EV(xE(s))ds

+ 2K 2T.

By (5.5), EV(x (T)), T > 0, e < some small Sl j is

bounded by

-XIT

(5.6) EV(x E (T)) < K3 e 1 + 2K2/XI

This and (C3) and a Theorem of Benes [11] imply that for small E

there is an invariant measure v .) for (x 5 (.),f(.)) and the

first assertion of the Theorem is proved. By (5.6), the x-marg-

inals { (.)} of {v (.)} are tight. By this and (C3) so is

{v E(.). Also, by (5.() and the pronerties of V(.),

{x e (t), E < E19 t > 0} is tight. Hence (AS) and the conclusions

of Theorem 1 hold.

Now, we prove the middle assertion of the Theorem. Let v (-)

be the measure of (x (0), (0)), and let x(.) denote
S

the weak limit of any weakly convergent subsequence {x (.)}. By

the invariance of v (-), the distribution of x (t) is P C(t)

for each t. Thus, x(t) has the same distribution for each t.
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This must be i(.), by the uniqueness of the invariant measure

i(-). In fact, if {vl(-)} denotes any sequence of invariant

measures for {x(.), S(-)} for which the x-marginals (

are tight, then we get the same result.

We complete the proof by showing that any sequence fvl(.),

small E} of invariant measures must be tight. Suppose that.

{Vl(-)) is not tight. Then for some sequence F, - 0 there

are N - and a 6 > 0 and (for each E in the sequence)

a sequence tn C as n - and an x for which

(5.7) P(]x C(tn I N E0 =x } >

(The measures of (t) are all the same, since (0)

= 0 ), and the -marzinals of vC(.) are all the

same.) But (5.6) implies that T3im E[V(xE (T))Ixg(0) x] < 2K2 /X ,
t w

a bound which depends neither on x. or on e. This contradicts

the assertions that N -* C as e + 0 and tn 0 as n - .

Thus {vl(.)} must be tight.

Q.E.D.

jl
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6. Examples

The two examples below arise in applications to control and

communication theory. They were chosen to illustrate the general

results and applicability of the methods of Theorems 1,2,4 under

slightly different conditions.

1. Adaptive antenna arrays. Let v(.-) denote a complex Rr

valued, stationary, bounded and right continuous stochastic

process and define M(t) = v*(t) v'(t), M (t) = M(t/W 2), M = EM(t),

where * denotes the complex conjugate. Let S be a complex

Rr-valued quantity and G0 , G, t positive real numbers. Let WC-)

and W(.) denote the solutions to

+ (GM + I)W G0 S ,

tWV+ (GM'+ I)W' = G0S , W(O) = W E(0)

Such equations arise in the study of adaptive antenna arrays [143.
E

The function W(t) converges as t -. Define x (-) = CW (•)

- W('))/E. Then

- 1 G C e G 6M x
(6.1) x (GM + I)x - TMx W (0) 0I~~~ ~ C61

where 6ME= M c- M. The asymptotic properties (large t, small )

are of interest.
0

Define the operator At by

At f(x) = G 0 '(t) E6M'(s)fxx(x)6M(0)W(t)ds

Let 6M(.) satisfy (Et denotes expectation conditioned on

v(P), p < t)
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fIEt M(t + s)Ids < K, all w,t

(6.2)

dsfdrIE 6M(t + s)6M' (t+ s + r) EoM(t + s)M' (t + s r) < K
f0 0 t

all w,t

Then x () is tight and converges 112] weakly to the nonhomo-

geneous diffusion x(.) with generatory given by

(6.3) (- . )f(x,t) = If l(x,t)( - + I)/T + Atf(x,t?

As t , the sequence of measures i(t,.) of x(t) converge

weakly to the invariant measure of the stationary diffusion which is
0

obtained when W(-) replaces W(t) in the definition of At. De-

fine V(x) = x'x. Then Theorem 3 holds with the condition (6.2)

replacing the mixing condition. The proof goes through owing to

the fact that 6ME(.) appears linearly in (6.1).

Example 2. Weak convergence of (6.4) was investigated in [13].

x = H(xE) + Dya
(6.4)

yE£= Lg((s + n - J(x )) /' , x (0) = x 0

In (6.4), ga(.) is an approximation to a "hard limiter;" a func-

tion g(.) is a hard limiter if g(u) = sign u,u 0 0. Such

functions occur frequently in applications in control and communi-

cations. Instead of working with g(.) directly, we worked in
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[13] with the approximation g,('), where g,(O) - 0, sign g.ju)

= sign u, g,(u) = sign u for Jul >_ a, Igc(u)j<l and k(u) < K/0,

for Jul _S a. The process s(.) is a bounded right continuous

signal which is a Feller-Markov (and ergodic) process with a

homogeneous transition function. Let n (t) = z(t/E2 )/E, where

z(.) is a scalar valued Gaussian process with correlation function

2 -ato e -  a > 0. With H(-) continuous and J(-) twice continuously

differentiable, {x (.)} is tight and converges weakly (as E - 0,

a-. 0 such that E c/a - 0) to the x(.) of (6.5), provided that

(6.5) has a unique solution on [0,-) (in the weak sense) for each

initial condition. Now, assume this uniqueness. Assume, in addi-

tion, that J(.) and its partial derivatives up to order 2 are

bounded and continuous, and that H(x) = O(jxl) for large lxl.

Let V(x) = x'Qx for Q > 0 and suppose that V'(x) H(x) < - YV(x)
x

+ K for some Y > 0.

dx = H(x)dt + LD (s - J(x)) 7 dt + LD . n dBa 7

(6.5)

x(0) = x 0 , B(.) = standard Brownian motion.

The perturbed Liapunov function VN(.) required for this case

can be constructed in a very similar way to that given in Theorem 3.

See, e.g., the way the analogous fE,N is constructed in [13].

We then get the situation of (5.1), where V(x) and V(x) are

O(IxI), and Cc(t), c(t) can each be taken to be of the form

lz(t/2 )1 . The O(c) in (5.1) need to be replaced by O(_kla)

But if we let a -* 0 as e - 0 such that c /cO. 0, Theorem 4

remains valid if x(.) satisfies the conditions of that theorem.
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This example is a simple form of a large class that occurs

naturally in control and communication theory, where the noise

is unbounded, the dynamics non-linear and to which our method

can be applied. The general ideas of Theorems 3 and 4 remain

valid, but the actual details of proof might depend on the spe-

cial conditions of the application.
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7. Discrete Parameter State Dependent Noise Case.

The method of Theorems 1, 3 and 4 is readily extended to the

discrete parameter case, and we will outline the idea for a case

where the noise depends on the state. See [9], [10] for examples

of such a case. Define {XC} by

(7.1 X' - ESG(XE) + CG(X 5 ,5 ) +/F- F(X5 ,1; C) + 0(S)I•n~l n nnnn'n + ov,

C
where {} is a bounded noise process. In many important cases,n

{;} depends on {XF} ([10]). We model this in the following
n n

way. Let {Xn, } be a homogeneous Markov process with the onenn

step marginal transition function written as

P C( ,lrx) P{; C E1'X = x, =

For each x, define the bounded chain { (x)} by the transition

function defined recursively by

Pe( ,j,'rlx) = fpC( ,j - Z,d lIx) PC( lz,rlx)

Let { (x)} have a unique invariant measure Pc(.) and let

denote expectation of functionals of the chain under the station-

ary measure.

The comments below are formal, and it is implicitly assumed

that the indicated derivatives and sums exist. Suppose that there

are continuous aii(.) and F() such that for each x the

limits (7.2) and (7.3) exist for smooth f(.). (The idea is sim-

pler for the case of non-state dependent noise, but owing to the
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numerous applications, it is worthwhile to present the more general
case. )

(7.2) Ee[E(F(x,g(x)) l(x)) F(x, (x)) + F(x)

(.) EF'X EF(x, (x) ) (x) Fx, (x))

(7.3) + aF. x,.'(x)) fx) F(x,a2  
0

" i,j 1

Let x (-) denote the piecewie constant process with values o n

[£n,£n +E). Under some additional conditions, {x (.)} converges

weakly to the diffusion x(.) with generator Y[9,lO].

For the discrete case, the operator A is defined on the

set of functions t which are constant on [nw,n + ), and

{X.j < n, j < n} E Yn measurable at ne. For f(.)€E.r, Alf is

defined by A f(t) = [Etf(t +E) -f(t)]/.

Given a Liapunov function V(.), the perturbed and truncated

VN(.)are found by a method that is very similar to that used in

Theorem 3, but with summation replacing integration, and a trunca-

ted Taylor series expansion rather than a differentiation used to

get the AN Perturbed test functions are constructed in
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[9], 110] and are used in the proof of the weak convergence men-

tioned above (following the method of 15]). The VF( would• ~N, i(.  ol

be constructed just as these perturbed test functions were, but

using test function VN(.) . If the V'(-) - V(.) and A VN()

- .V(.) satisfy the bounds (4.6), (4.8) in the set S,, then the dis-

crete parameter analog of Theorem 3 holds. Theorem 1 holds in any

case if the {x (.)} of this section satisfies the conditions of

that theorem.
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